Rapid quantification of DNA methylation through dNMP analysis following bisulfite-PCR
نویسندگان
چکیده
We report a novel method for rapid quantification of the degree of DNA methylation of a specific gene. Our method combined bisulfite-mediated PCR and quantification of deoxyribonucleoside monophosphate (dNMP) contents in the PCR product through capillary electrophoresis. A specific bisulfite-PCR product was enzymatically hydrolyzed to dNMP monomers which were quantitatively analyzed through subsequent capillary electrophoresis. PCR following bisulfite treatment converts unmethylated cytosines to thymines while leaving methyl-cytosines unchanged. Then the ratio of cytosine to thymine determined by capillary electrophoresis represents the ratio of methyl-cytosine to cytosine in genomic locus of interest. Pure oligonucleotides with known sequences were processed in parallel as standards for normalization of dNMP peaks in capillary electrophoresis. Sources of quantification uncertainty such as carryovers of dNTPs or primers and incomplete hydrolysis were examined and ruled out. When the method was applied to samples with known methylation levels (by bisulfite-mediated sequencing) as a validation, deviations were within +/-5%. After bisulfite-PCR, the analytical procedure can be completed within 1.5 h.
منابع مشابه
Accurate quantification of DNA methylation using combined bisulfite restriction analysis coupled with the Agilent 2100 Bioanalyzer platform
DNA methylation is the best-studied epigenetic modification and describes the conversion of cytosine to 5-methylcytosine. The importance of this phenomenon is that aberrant promoter hypermethylation is a common occurrence in cancer and is frequently associated with gene silencing. Various techniques are currently available for the analysis of DNA methylation. However, accurate and reproducible ...
متن کاملReference Materials for Calibration of Analytical Biases in Quantification of DNA Methylation
Most contemporary methods for the quantification of DNA methylation employ bisulfite conversion and PCR amplification. However, many reports have indicated that bisulfite-mediated PCR methodologies can result in inaccurate measurements of DNA methylation owing to amplification biases. To calibrate analytical biases in quantification of gene methylation, especially those that arise during PCR, w...
متن کاملControl of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA
In this study, we adapted the well known uracil DNA glycosylase (UNG) carry-over prevention system for PCR, and applied it to the analysis of DNA methylation based on sodium bisulfite conversion. As sodium bisulfite treatment converts unmethylated cytosine bases into uracil residues, bisulfite treated DNA is sensitive to UNG treatment. Therefore, UNG cannot be used for carry-over prevention of ...
متن کاملNGS-based deep bisulfite sequencing
We have developed an NGS-based deep bisulfite sequencing protocol for the DNA methylation analysis of genomes. This approach allows the rapid and efficient construction of NGS-ready libraries with a large number of PCR products that have been individually amplified from bisulfite-converted DNA. This approach also employs a bioinformatics strategy to sort the raw sequence reads generated from NG...
متن کاملCorrigendum: Identification of a 5-Methylcytosine Site that may Regulate C/EBPβ Binding and Determine Tissue-Specific Expression of the BPI Gene in Piglets
In this Article the Authors incorrectly stated that they had developed a novel method termed bisulfite amplicon sequencing (BSAS). The method was reported by Masser et al. (reference 18 in the Article). Thus the following sentence (which appears verbatim in ref. 18): " By combining the benefits of bisulfite conversion, targeted amplification, tagmentation-based library construction , and NGS, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006